Design and simulation of an electrically tunable quantum dot cascade laser

نویسندگان

  • Dibyendu Dey
  • Wei Wu
  • Omer Gokalp Memis
  • Hooman Mohseni
چکیده

We present here a novel design to form an artificial quantum dot with electrical confinement and apply it to a Quantum Cascade Laser structure to realize a Quantum Dot Cascade Laser. A two-dimensional finite element method has been used to numerically simulate the novel design of electrical formation of an artificial quantum dot. The size of the quantum dot is electrically tunable and can be applied to quantum cascade laser structure to reduce the non-radiative LOphonon relaxation. Numerical modeling with cylindrical symmetry is custom developed using Comsol multiphysics to evaluate the electrical performance of the device and optimize it by varying design parameters, namely, the doping density of different layers and thickness of the cladding and active regions. The typical s-, p-, dand fwave functions have been calculated. Numerical simulations show that the energy level separation could be as large as 50 meV by electrical confinement. We also demonstrate the road map for the fabrication of such a device using a maskless super lens photolithography technique. We have achieved a uniform array of nano-contacts of size ~ 200nm, required for the device, using photolithographic technique with a UV source of λ ~ 400nm. The entire processing involves 7 photolithographic steps. This new device “Quantum dot cascade laser”, promises low threshold current density and high wall-plug efficiency. Index terms – quantum cascade laser (QCL), quantum dot (QD), quantum dot cascade laser (QDCL), super lens lithography (SLL).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser

In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...

متن کامل

Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quan...

متن کامل

Optically tunable long wavelength infrared quantum cascade laser operated at room temperature

Related Articles Mid-infrared-pumped, electrically driven terahertz quantum laser: Enhanced pumping efficiency and prevention of electric-field domains J. Appl. Phys. 113, 033103 (2013) How does external feedback cause AlGaAs-based diode lasers to degrade? Appl. Phys. Lett. 102, 023502 (2013) Large-area ultraviolet GaN-based photonic quasicrystal laser with high-efficiency green color emission ...

متن کامل

pH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation

In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...

متن کامل

Optimized Design of Multiplexor by Quantum-dot CellularAutomata

Quantum-dot Cellular Automata (QCA) has low power consumption and high density and regularity. QCA widely supports the new devices designed for nanotechnology. Application of QCA technology as an alternative method for CMOS technology on nano-scale shows a promising future. This paper presents successful designing, layout and analysis of Multiplexer with a new structure in QCA technique. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009